

John M. Butler

Number of Contributors

BOSTON

university

GUIDELINES

What constitutes a mixture?

SWGDAM Interpretation Guideline 3.4:

A sample is generally considered to have originated from more than one individual if three or more alleles are present at one or more loci (excepting tri-allelic loci) and/or the peak height ratios between a single pair of allelic peaks for one or more loci are below the empirically determined heterozygous peak height ratio expectation.

Do you currently attempt to determine the number of contributors in a DNA mixture?

1. Yes
2. No
3. It depends on the case and how complicated the mixture is.
4. We use CPE/CPI statistics and therefore don't need to estimate the number of contributors.

How do you distinguish between a single source sample and a mixture?

- Don't focus on a single locus - must evaluate the entire profile (or at least multiple loci that are available if a partial profile)!

Look to the most polymorphic loci to see if there are $\mathbf{> 2}$ alleles present..

PRACTICE						UPDATED SLIDE	
Mixture Case Summaries Collection organized by Ann Gross (July 2007 - Feb 2008)							
minimum \# of contributors							
Crime Class	1	2	3	4	>4	N	
Sexual Assault	884	787	145	11	0	1827	40.2\%
Major Crime	1261	519	182	32	0	1994	43.9\%
High Volume	344	220	140	11	5	720	15.9\%
Total	2489	1526	467	54	5	4541	
	54.8\%	33.6\%	10.3\%	1.2\%	0.1\%		
This initial data compilation performed by Michelle Burns (NIST 2008 summer intern)							

Minimum number of contributors

SWGDAM Interpretation Guideline 3.4:

Generally, the minimum number of contributors to a mixed sample can be determined based on the locus that exhibits the greatest number of allelic peaks. As an example, if at most five alleles are detected per locus, then the DNA typing results are consistent with having arisen from at least three individuals.

PRINCIPLES							
STR Loci Ranking by Variability in 1426 U.S. samples							
	STR Locus	Alleles Observed	Genotypes Observed	H(obs)	PIC	$\begin{aligned} & P_{1} \text { (total) } \\ & n=1426 \end{aligned}$	
	SE33	58	341	0.9383	0.9424	0.0063	(variable) the locus, the
	Penta E**	20	113	0.8779	0.8992	0.0175	greater the chance of
	D2S1338	13	73	0.8752	0.8818	0.0221	greater the chance of
	D151656	17	99	0.8871	0.8806	0.0229	having non-overlapping
	D18S51	23	102	0.8696	0.8694	0.0263	alleles between
	$\begin{gathered} \text { D12S391 } \\ \text { FGA } \end{gathered}$	$\begin{aligned} & 24 \\ & 29 \end{aligned}$	$\begin{aligned} & 120 \\ & 111 \end{aligned}$	0.8654 0.8702	0.8646 0.8599	0.0279 0.0299	contributors in a
	Penta_D*	16	70	0.8733	0.8486	0.0360	mixture leading to a
	D21S11	32	98	0.8331	0.8300	0.0399	greater ability to
	D19S433	16	83	0.8100	0.7987 0.7965	0.0534	accurately determine
	D8S1179 vWA	11	48	0.7966 0.8000	0.7965 0.7863	0.0553 0.0624	the number of
	D16S539	9	30	0.7812	0.7650	0.0723	the number
	D13S317	9	30	0.7749	0.7637	0.0724	contributors
	D7S820	12	35	0.7826	0.7627	0.0745	
	TH01	14	27	0.7518	0.7578	0.0752	D18S51 (with 23 observed alleles in a
	D2S441	14	46	0.7777	0.7490	0.0807	population set; 87% heterozygosity) is
	D10S1248	112	41 31	0.7812 0.7489	0.7458 0.7309	0.0828 0.0904	more likely to exhibit 4 alleles with a
	D22S1045	11	45	0.7567	0.7305	0.0935	two person mixture than TPOX (w
	D5S818	9	34	0.7225	0.7033	0.1057	only 10 observed alleles in the same population set; 68% heterozygosity)
	CSF1PO	10	33	0.7567	0.7024	0.1071	
	TPOX	10	30	0.6830	0.6549	0.1351	

GUIDELINES
 Impact of Assumptions on Statistical Calculations

SWGDAM Guidelines Section 4. Statistical Analysis of DNA Typing Results (introduction):

- While the RMP is commonly thought of in terms of single-source profiles, the application of this formula to evidentiary profiles inherently includes an assumption of the number of contributors to the DNA sample. As such, this document also applies the term RMP to mixture calculations where the number of contributors is assumed (this has sometimes been referred to as a "modified RMP"). By using the RMP nomenclature, these calculations are distinguished from the CPI nomenclature which is commonly thought of in terms of a mixture calculation that makes no assumption as to the number of contributors.

GUIDELINES

Terminology

SWGDAM Guidelines glossary:

- Conditional: an interpretation category that incorporates assumption(s) as to the number of contributors.
- Restricted: referring to a statistical approach conditioned on the number of contributors and with consideration of quantitative peak height information and inference of contributor mixture ratios; used to limit the genotypic combinations of possible contributors.
- Unrestricted: referring to a statistical approach performed without consideration of quantitative peak height information and inference of contributor mixture ratios; for CPE/CPI this may or may not be conditioned on the number of contributors.

GUIDELINES			
Table 1 - Suitable Statistical Analyses for DNA Typing Results The statistical methods listed in the table cannot be combined into one calculation. For example, combining RMP at one locus with a CPI calculation at a second locus is not appropriate. However, an RMP may be calculated for the major component of a mixture and a CPE/CPI for the entire mixture (as referred to in section 4.6.2).			
Category of DNA Typing Result	RMP	CPE/CPI	LR (1)
Single Source	\checkmark		\checkmark
Single Major Contributor to a Mixture	\checkmark		\checkmark
Multiple Major Contributors to a Mixture	\checkmark (2)	\checkmark (2)	\checkmark
Single Minor Contributor to a Mixture	\checkmark	\checkmark (3)	\checkmark
Multiple Minor Contributors to a Mixture	\checkmark (2)	\checkmark (3)	\checkmark
Indistinguishable Mixture	\checkmark (1)	\checkmark	\checkmark
(1) Restricted or unrestricted (2) Restricted (3) All potential alleles identified during interpretation are included in the statistical calculation			
http://www.fbi.gov/hq/lab/html/codis_swgdam.pdf			

Primary means by which you determine the number of contributors?

1. Amelogenin X / Y ratio
2. Number of alleles present at a single locus
3. Assess the number of alleles present at multiple loci
4. Peak height ratio imbalance
5. Both \#3 and \#4
6. Our lab does not attempt to determine the number of contributors

Potential Problems with Amelogenin

- Works best with 2-person male/female mixtures (such as sexual assault cases)
- Male/male mixture or multiple males with single female component limit usefulness
- Molecular reasons for alteration of expected ratio - Deletion of AMEL Y (or primer site mutation)
- Deletion of AMEL X (or primer site mutation)

PRINCIPLES	
Possible genotype combinations in 2-person mixtures	
See Butler, J.M. (2005) Forensic DNA Typing, 2 ${ }^{\text {rd }}$ Edition, pp. 156-157	¢ \bigcirc^{7}
Four Peaks (4 allele loci)	\%
-heterozygote + heterozygote, no overlapping alleles (genotypes are unique)	Λ
Three Peaks (3 allele loci)	
-heterozygote + heterozygote, one overlapping allele -heterozygote + homozygote, no overlapping alleles (genotypes are unique)	
	$\wedge \Lambda _$
Two Peaks (2 allele loci)	A는
-heterozygote + heterozygote, two overlapping alleles (genotypes are identical) -heterozygote + homozygote, one overlapping allele -homozygote + homozygote, no overlapping alleles (genotypes are unique)	AL
	$\xrightarrow{1}$
Single Peak (1 allele loci)	」
-homozygote + homozygote, overlapping allele (genotypes are identical)	,
Must also consider the stutter position when the mixture ratio is large enough for the minor component(s) to be in PHR with stutter peaks	근

If 5 alleles are observed at a single locus in a DNA mixture profile, what conclusions would you draw?

1. I am still freaked out by the last slide showing how many allele combinations are possible with 3 contributors
2. At least 3 people are present in the mixture
3. 2-person mixture with a potential tri-allele at the one locus
4. Both \#2 and \#3 are possibilities and would be stated as such in the written report
5. I would not attempt to draw any conclusion

Comparison of Expected and Simulated Mixture Results

Expected Results when estimating \# of contributors:

- If 2,3 , or 4 alleles are observed at every locus across a profile then 2 contributors are likely present
- If a maximum of 5 or 6 alleles at any locus, then 3 contributors are possible
- If >6 alleles in a single locus, then >3 contributors

Results from Simulation Studies:

- Buckleton et al. (2007) found with a simulation of four person mixtures that 0.02% would show four or fewer alleles and that 76.35% would show six or fewer alleles for the CODIS 13 STR loci.

PRACTICE				NEW
Simulations with 2-person Mixtures				
Table 1 The probability of observing a given number of alleles in a two-person mixtures for simulated profiles at the $\mathrm{SGM}^{+\mathrm{TM}}$ loci				
Loci	No. of alleles			
	1	2	3	4
D3	0.011	0.240	0.559	0.190
vWA	0.008	0.194	0.548	0.250
D16	0.016	0.287	0.533	0.164
D2	0.003	0.094	0.462	0.441
D8	0.011	0.194	0.521	0.274
D21	0.007	0.147	0.505	0.341
D18	0.003	0.095	0.472	0.430
D19	0.020	0.261	0.516	0.203
THO	0.016	0.271	0.547	0.166
FGA	0.003	0.116	0.500	0.381
Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributorsto DNA stains. FSI Genetics 1:20-28				

PRACTICE						NEW SLIDE
Simulations with 3-person Mixtures						
Table 2 The probability of observing a given number of alleles in a three-person mixtures for simulated profiles at the $\mathrm{SGM}^{+\mathrm{TM}}$ loci						
Loci	No. of alleles showing					
	1	2	3	4	5	6
D3	0.000	0.053	0.366	0.463	0.115	0.002
vWA	0.000	0.037	0.285	0.468	0.194	0.016
D16	0.001	0.086	0.397	0.411	0.100	0.005
D2	0.000	0.008	0.104	0.385	0.393	0.110
D8	0.001	0.041	0.258	0.436	0.236	0.029
D21	0.000	0.023	0.192	0.428	0.302	0.055
D18	0.000	0.007	0.109	0.392	0.396	0.096
D19	0.003	0.078	0.352	0.401	0.152	0.014
THO	0.001	0.074	0.395	0.439	0.088	0.002
FGA	0.000	0.012	0.144	0.424	0.346	0.074
Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributors to DNA stains. FSI Genetics 1:20-28						

PRACTICE

Three Contributors and Observed Alleles

A B C
Maximum: 6 alleles
$\Lambda \Lambda _$All heterozygotes and non-overlapping alleles

Four Contributors and Observed Alleles
$A \quad B \quad C \quad D \quad$ Maximum: 8 alleles
$\Lambda ___\quad \Lambda _$All heterozygotes and non-overlapping alleles

PRACTICE								NEW SLIDE
Simulations with 4-person Mixtures ble 3 e probability of observing a given number of alleles in a four person mixtures r simulated profiles at the $\mathrm{SGM}^{+\mathrm{TM}}$ loci								
Loci	No. of alleles showing							
	1	2	3	4	5	6	7	8
D3	0.000	0.011	0.178	0.497	0.291	0.023	0.001	0.000
vWA	0.000	0.008	0.107	0.406	0.377	0.097	0.005	0.000
D16	0.000	0.027	0.240	0.458	0.238	0.036	0.001	0.000
D2	0.000	0.001	0.020	0.148	0.363	0.345	0.112	0.012
D8	0.000	0.009	0.103	0.340	0.377	0.151	0.019	0.001
D21	0.000	0.005	0.058	0.262	0.392	0.231	0.049	0.003
D18	0.000	0.000	0.023	0.166	0.382	0.321	0.101	0.008
D19	0.000	0.025	0.199	0.399	0.282	0.086	0.010	0.000
THO	0.000	0.020	0.222	0.501	0.241	0.016	0.000	0.000
FGA	0.000	0.001	0.034	0.215	0.398	0.281	0.068	0.004
Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributors to DNA stains. FSI Genetics 1:20-28								

The probability of observing a given number of alleles in a four person mixtures for simulated profiles at the $\mathrm{SGM}^{+\mathrm{TM}}$ loci

Loci No. of alleles showing

D3	0.000	0.011	0.178	0.497	0.291	0.023	0.001	0.000
	WHA	0.000	0.008	0.107	0.406	0.377	0.097	0.005

$\begin{array}{lllllllll}\text { D2 } & 0.000 & 0.001 & 0.020 & 0.148 & 0.363 & 0.345 & 0.112 & 0.012\end{array}$

FGA	0.000	0.001	0.034	0.215	0.398	0.281	0.068	0.004

dition et a. (2007) Towards understanding the effect of uncertainty in the number of contributors

GUIDELINES

Methods Needed for Determining the Minimum

 Number of Contributors to a Mixture
SWGDAM Guidelines 3.4.1 and 3.4.2:

- 3.4.1. For DNA mixtures, the laboratory should establish guidelines for determination of the minimum number of contributors to a sample. Alleles need not meet the stochastic threshold to be used in this assessment.
- 3.4.2. The laboratory should define the number of alleles per locus and the relative intra-locus peak height requirements for assessing whether a DNA typing result is consistent with originating from one or more sources. The minimum number of loci should be defined for determination of whether a sample is a mixture.

