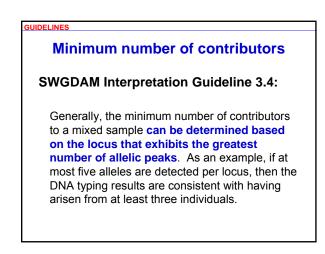
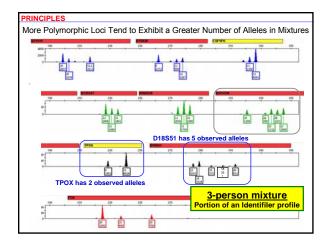
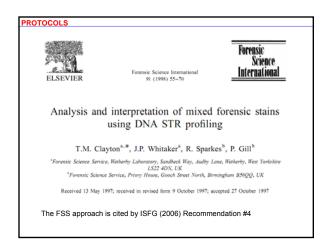


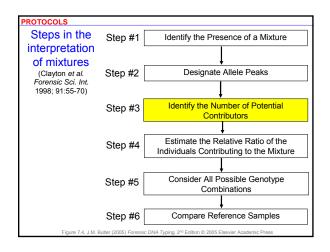
ISHI 2010 Mixture Workshop

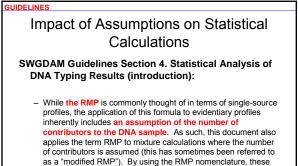


- How is this topic applied?


http://www.cstl.nist.gov/biotech/strbase/training.htm


ISHI 2010	Mixture Workshop	
	October 11, 2010	

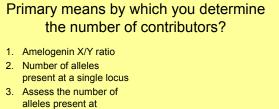

	mi	nimum a	# of cont	ributors			
Crime Class	1	2	3	4	>4	N	
Sexual Assault	884	787	145	11	0	1827	40.2%
Major Crime	1261	519	182	32	0	1994	43.9%
High Volume	344	220	140	11	5	720	15.9%
Total	2489	1526	467	54	5	4541	
	54.8%	33.6%	10.3%	1.2%	0.1%		
This initial data co performed by Mich (NIST 2008 summe	elle Burns						


PR	INCIPLES STR		ankin	g by	Varia	bility in	1426 U.S. samples
	STR Locus	Alleles Observed	Genotypes Observed	H(obs)	PIC	P ₁ (total) n = 1426	The more polymorphic
n commercial STR kits	SE33 Penta_E* D2S1338 D1S1656 D18S51 D12S391 FGA Penta_D* D21S11 D19S433	58 20 13 17 23 24 29 16 32 16 11	341 113 73 99 102 120 111 70 98 83	0.8779 0.8752 0.8871 0.8654 0.8654 0.8702 0.8733 0.8331 0.8331	0.7987	0.0063 0.0175 0.0221 0.0229 0.0263 0.0279 0.0299 0.0360 0.0399 0.0534	(variable) the locus, the greater the chance of having non-overlapping alleles between contributors in a mixture leading to a greater ability to accurately determine
tly present in	D8S1179 vWA D16S539 D13S317 D7S820 TH01	11 9 9 12 9	48 42 30 30 35 27	0.8000 0.7812 0.7749 0.7826	0.7965 0.7863 0.7650 0.7637 0.7627 0.7578	0.0553 0.0624 0.0723 0.0724 0.0745 0.0752	the number of contributors
23 loci currently	D2S441 D10S1248 D3S1358 D22S1045 D5S818 CSF1PO	14 12 11 11 9 10	46 41 31 45 34 33	0.7777 0.7812 0.7489 0.7567 0.7225 0.7567	0.7490 0.7458 0.7309 0.7305 0.7033 0.7024	0.0807 0.0828 0.0904 0.0935 0.1057 0.1071	D18551 (with 23 observed alleles in a population set; 87% heterozygosity) is more likely to exhibit 4 alleles with a two person mixture than TPOX (with only 10 observed alleles in the same population set; 68% heterozygosity)
,	TPOX	10	30	0.6830		0.1351	S391, D1S1656, D2S441, D10S1248, D22S1045, and SE33.

Module 7: Estimating the Number of Contributors

makes no assumption as to the number of contributors.

Conditional: an interpretation category that incorporates assumption(s) as to the number of contributors Restricted: referring to a statistical approach conditioned on the number of contributors and with consideration of quantitative peak height information and inference of contributor mixture ratios; used to limit the genotypic combinations of possible contributors. calculations are distinguished from the CPI nomenclature which Unrestricted: referring to a statistical approach performed is commonly thought of in terms of a mixture calculation that without consideration of quantitative peak height information and

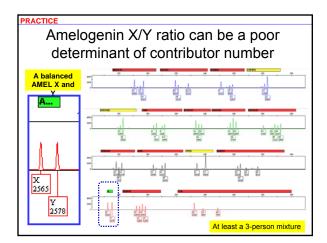

GUIDELINES

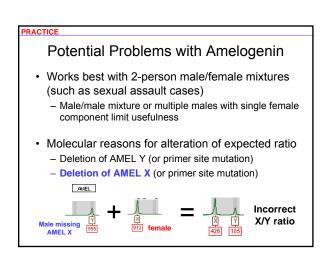
Different Statistical Approaches Can Be Used Table 1 – Suitable Statistical Analyses for DNA Typing Results The statistical methods listed in the table cannot be combined into one calculation. For example, combining RMP at one locus with a CPI calculation at a second locus is not appropriate. However, an RMP may be calculated for the major component of a mixture and a CPE/CPI for the entire mixture (as referred to in section 4.6.2). Category of DNA Typing Result Single Source RMP CPE/CPI LR (1) ~

Single Major Contributor to a Mixture	~		>
Multiple Major Contributors to a Mixture	✓ (2)	✓ (2)	>
Single Minor Contributor to a Mixture	~	✓ (3)	>
Multiple Minor Contributors to a Mixture	✓ (2)	✓ (3)	>
Indistinguishable Mixture	✓ (1)	~	<
(1) Restricted or unrestricted (2) Restricted			

All potential alleles identified during interpretation are included in the statistical calculation

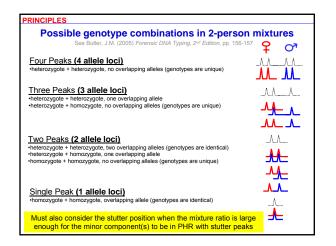
http://www.fbi.gov/hq/lab/html/codis_swgdam.pdf

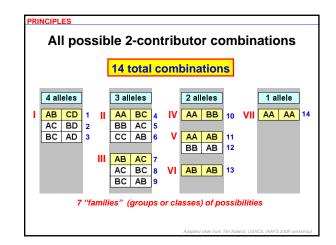


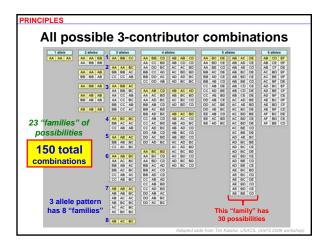

inference of contributor mixture ratios; for CPE/CPI this may or may not be conditioned on the number of contributors.

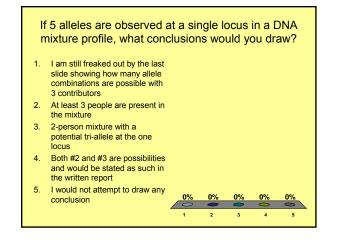
Terminology

SWGDAM Guidelines glossary:


- multiple loci Peak height ratio 4 imbalance
- Both #3 and #4 5. Our lab does not attempt 6. to determine the number of contributors

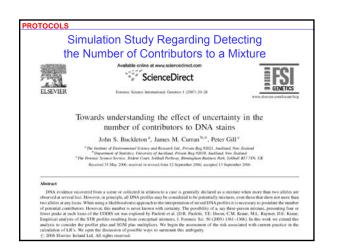


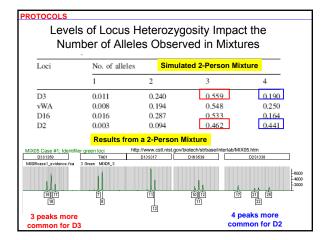



http://www.cstl.nist.gov/biotech/strbase/training.htm

Module 7: Estimating the Number of Contributors

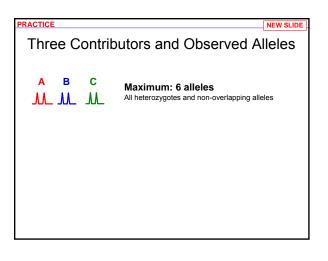
Comparison of Expected and Simulated Mixture Results


Expected Results when estimating # of contributors:


- If 2, 3, or 4 alleles are observed at every locus across a profile then 2 contributors are likely present
- If a maximum of 5 or 6 alleles at any locus, then 3 contributors are possible
- If >6 alleles in a single locus, then >3 contributors
- **Results from Simulation Studies**:

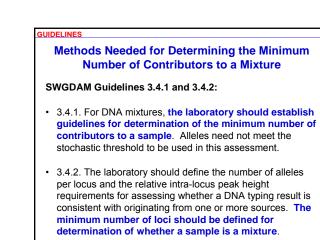
ROTOCOLS

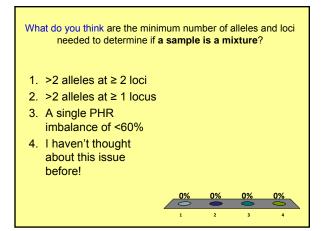
 Buckleton *et al.* (2007) found with a simulation of four person mixtures that 0.02% would show four or fewer alleles and that 76.35% would show six or fewer alleles for the CODIS 13 STR loci.

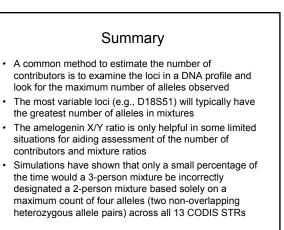

Buckleton et al. (2007) Towards understanding the effect of uncertainty in the number of contributors to DNA ctains. *ESI Constitute* 1:30-38

PRACTICE	NEW SLIDE
	ntributors and Observed Alleles
100 00	Infibutors and Observed Alleles
A B	
	Maximum: 4 alleles All heterozygotes and non-overlapping alleles
	3 alleles Heterozygote + heterozygote, one overlapping allele Heterozygote + homozygote, no overlapping alleles
<u>₩</u> - <u>↓</u> 	2 alleles Heterozygote + heterozygote, two overlapping alleles Heterozygote + homozygote, one overlapping allele Homozygote + homozygote, no overlapping alleles
≁	1 allele Homozygote + homozygote, overlapping allele

lations	with 2-pe	rson Mix	tures
	- 1		
ty of observing a	given number of a	lleles in a two-pers	on mixtures
		neies in a two-pers	son mixtures
No. of aller			
1	2	3	4
0.011	0.240	0.559	0.190
0.008	0.194	0.548	0.250
0.016	0.287	0.533	0.164
0.003	0.094	0.462	0.441
0.011	0.194	0.521	0.274
0.007	0.147	0.505	0.341
0.003	0.095	0.472	0.430
0.020	0.261	0.516	0.203
0.016	0.271	0.547	0.166
0.003	0.116	0.500	0.381
	ty of observing a profiles at the 5 No. of allel 1 0.011 0.008 0.016 0.003 0.011 0.007 0.003 0.021	ty of observing a given number of a profiles at the SGM* TM loci No. of alleles 1 2 0.011 0.240 0.008 0.194 0.016 0.287 0.003 0.094 0.011 0.194 0.007 0.147 0.003 0.095 0.020 0.261	No. of alleles 1 2 3 0.011 0.240 0.559 0.008 0.194 0.548 0.016 0.287 0.533 0.003 0.094 0.462 0.011 0.194 0.521 0.007 0.147 0.505 0.003 0.095 0.472 0.020 0.261 0.516




Table 2		ONS W	•			
	s for simula	ted profiles a	at the SGM			
	1	2	3	4	5	6
D3	0.000	0.053	0.366	0.463	0.115	0.002
vWA	0.000	0.037	0.285	0.468	0.194	0.016
D16	0.001	0.086	0.397	0.411	0.100	0.005
D2	0.000	0.008	0.104	0.385	0.393	0.110
D8	0.001	0.041	0.258	0.436	0.236	0.029
D21	0.000	0.023	0.192	0.428	0.302	0.055
D18	0.000	0.007	0.109	0.392	0.396	0.096
D19	0.003	0.078	0.352	0.401	0.152	0.014
THO	0.001	0.074	0.395	0.439	0.088	0.002
FGA	0.000	0.012	0.144	0.424	0.346	0.074



http;//www.cstl.nist.gov/biotech/strbase/training.htm

TICE								NEW SL
Si	mula	ation	s wit	h 4-j	oerso	on M	lixtur	es
	obability		ing a give the SGM		r of allele	s in a fou	r person n	nixtures
Loci No. of alleles showing								
	1	2	3	4	5	6	7	8
D3	0.000	0.011	0.178	0.497	0.291	0.023	0.001	0.000
vWA	0.000	0.008	0.107	0.406	0.377	0.097	0.005	0.000
D16	0.000	0.027	0.240	0.458	0.238	0.036	0.001	0.000
D2	0.000	0.001	0.020	0.148	0.363	0.345	0.112	0.012
D8	0.000	0.009	0.103	0.340	0.377	0.151	0.019	0.001
D21	0.000	0.005	0.058	0.262	0.392	0.231	0.049	0.003
D18	0.000	0.000	0.023	0.166	0.382	0.321	0.101	0.008
D19	0.000	0.025	0.199	0.399	0.282	0.086	0.010	0.000
тно	0.000	0.020	0.222	0.501	0.241	0.016	0.000	0.000
FGA	0.000	0.001	0.034	0.215	0.398	0.281	0.068	0.004

